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We present an exact solution of the nonstationary heat-conduction equation for 
particles belonging to a nonhomogeneously heated gas with a temperature field 
linear at infinity and with all corrections, linear with respect to the Knudsen 
number, taken into account. 

For small nonzero Knudsen numbers Kn the ordinary hydrodynamics equations, including 
the heat-conductionequation, become inaccurate close to a solid surface in a kinetic layer 
on the order of several free path lengths of the gas particles. However, within the frame- 
work of ordinary hydrodynamics, one can find first-order corrections to the hydrodynamic 
equations, which are linear in the Knudsen number, with the aid of which one may employ the 
corresponding boundary conditions on the solid body surface [1-4]. Constants appearing in 
the boundary conditions may be obtained from a comparison of the predicted theory with ex- 
periment [5] of from a solution of the kinetic equation close to a particle [3]. 

We consider a spherical particle situated in a temperature field linear at infinity. 
We shall assume that Kn = I/R ~ 0.3, RIv in T I << i. Under these conditions we can neglect 
the influence of slow thermophoretic motion on heat transfer and we can use the ordinary 
heat-conduction equation 

aT 
div (• grad T) == cv9 ~ + F (r, O, 

(1) 
I • r<gR, { cpaPa r<R ,  

>r ~ Cpp  = :  

{ • r > R ,  cpep~ r > R .  
The initial and boundary conditions on the particle surface [3, 4] and at infinity have the 
form 

T~-- Ta= KTI(t-----~-~-r /n ~ . •  --OTe __ • OTaor ..... =cqKn--~ -(divV~Te)R ; 
Or (Z) 

T ~  --~ T~o § r(vT~)~; T(t = O, r) == q(r), 

where V~T e is the tengential portion of the temperature gradient on the particle surface. 
The first of the boundary conditions (2) takes into account the jump in temperature on the 
particle surface owing to the presence of the Knudsen layer, in which the ordinary equations 
do not apply. The second condition describes the tangential heat transfer (slippage) in the 
Knudsen layer, which has an affect on the balance of normal heat flows. The boundary condi- 
tions (2) enable us to "splice together" the solutions in the Knudsen layer where the Eq. 
(i) is not applicable. 

We seek a solution in the form T = T I + T 2, where T 2 tends toward zero as r + =o For 
T l we take the stationary solution. In a spherical coordinate system with z axis directed 
along the temperature gradient at infinity, T I has the form 

Ye~ = T~o -]- r (vT~)~ -f- --B-B cos 0; T~, = Y~ + Ar cos 0; 
f2  
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A = • § 2~z~cz~ 
• Jr 2xe --  2Re% -I- 2• 

R 

B =  Xe - -  X~ 4- 2a2R + • ; oh ---- K.l; 
g. -k 2~e -- 2~R  -k 2• 

a~ = cqKn xdR. 

(3) 

We expand T 2 in the spherical functions Ymn(8, ~ ) and substitute it into Eqs. (i) and (2). 
For the coefficients of the expansion we obtain the equation 

1 0 0 Tnm n (n -~ I) ~Tnm = Cpp + Fnm ; 
r' ~ f •  Or r ~ k at (4) 

T, = "~ Trim (r, t) Ynm (O, ~); F = c.p ~ F.m (r, t) Ynm (0, ~)' 
n . m  n , ~  

with the boundary conditions 

[(Te)nm --  (Ta).m]r=R = ~l [ ~ (Te)nm]r=R ; 

(5) 
0--~- (T.).m --  x~ 0-~ (Ta ) . J  =a.(re).m; a . = - - n ( n + l ) = , .  

xe Or . Or Jr=a 

In solving the system (4), (5) it is much more convenient to use an integral transform 
with respect to the variable r rather than the Laplace transform with respect to the time, 
customarily applied in such cases. To do this, we multiply Eq. (4) by g(r)Knm(r, s) and in- 
tegrate from zero to infinity. Putting g(r) = r=8, we obtain the following equation after 
an integration by parts: 

Here 

i { (  ) } ~a r'x OrO Knm - - n ( n  + l) K,m T,~mdr+N(R)='-~- T,ms(t)-bFnm,. 
\ 

N = N~--  N~; N~ = g~z~,R2W I(K~)~, (T~)~sI (a = a, @, 

where W is  the  Wronskian and the  func t ion  Knm must s a t i s f y  the  equa t ion  

1 0 ( 0 ) n ( n + l )  
r 2~r " Knm KnmX = --  s~cppKnm. 

r ~ Or Or r 2 

If in Eq. (5) we express the derivatives of the temperature in terms of the remaining 
functions and substitute into Eq. (6), we find, if the conditions 

~ ( K e ) . ~ - - ( G ) ~  = ~ (K~).~; 
[~o • Or 

0 

are satisfied for r = R, that N = 0. 

(6) 

(7) 

(8) 

For the operator in Eq. (7) to be self-adjoint in [0, ~] it is necessary to choose the 
weight g(r) to be discontinuous: 

With no loss of generality we can put ~a = i. 

Solving Eq. (7) along with Eq. (8) and taking Eq. (9) into account, we obtain 

(Ka)nm: ge~ A.m(s) J .  (ka, r); k.R ~ 

(K~).m = A.m (s) {a.m (s) J~ (k:) + b.m (s) X. (k:)}, 

(lO) 
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where 
a .m -- • (k~, R) x,:, (k~R) - -  x,,k,,],:, (ko, R) z,, (k., R) + 

- .  cz~xakakd~ (koR) x~ (k2 )  - -  a , j n  (koR) z~. (k~R); 

t ~  = x~kj~ (k~, R) J'~ (k~R) --  • (k~R) J~ (k~R) + (11) 

k ' =  s~ = err s~; f~ ( k R ) =  ~ a  f,,; f,~ =: d,~, z~. 
a ~ • OkR 

Here Jn and Xn are spherical Bessel and Neumann functions. The constants Anm are obtained 
from the normalization condition 

2 .3-1/2 
A,~m (s) = z~ X e  - -  ~zlan (an2m (S) --  brim (s)) [ 

2 aok~ 
o 

# 

Since N = 0, Eq. (5) assumes the form 

0 
-- T~= (s, t) + s=T~ (s, t) + F~m (s, t) = 0 Ot 

The spectrum of the problem is continuous. The inverse transform is 

T -- T~ + ~ Y ~  (0, 9) ~ K ,~  (r, s) T ~  (s, t) ds. (12)  

From gqs. (10)-(12) we find, after certain transformations, 

Ta : Tal -~- ~ CteXe ~ Ynm (0, ~) l X 
1"l,112 ~ e  

t 

• i' a~m (s)dn(kJ)+ b~m (s) "oi G.,.(s, ~){exp(--s~t)[[nr~(~)-j- o~eXp(s't)F'm(s' "c) da:]} ~'.~ds; 

a.m].(k.r) + b..,X,,(k.r)b~ ?" Grim(s, ~) {exp(--s ' t )  [[n.(~)+ T . =  T.,+ .2-  z. ~'q r . . , (O, 9) ' " . 
�9 ~ ~,., o ~ (s) + (s) 

t 

-[- .f exp (s~'c) F , ~  ([, T) dT]} [~d~Sds; ( 13 ) 
0 

6.,,, (s, [) = (a~ (s, .~)),.,, ~ > R; 

(G~),~.,----- e,~p,~ ] .  (ka[); Into (~) = qn,~ (~) - -  (T~)..,; 
R'  

(G.),.,,= k ~  {a,.~ (s) J,~ (k.~) + b,,~ (s) z .  (k.~)), 
a ;  

if the function Fnm(~, r) is such that the orders of integration with respect to ~ and �9 can 
be interchanged. 

Since the integrand functions are even with respect to s, we can take the integral with 
respect to this variable over the range (-~, ~). Considering the integral with respect to 
this variable in the complex plane and choosing an integration contour in the form of the 
segment (-s, s) and an arc in the upper half plane, we can show that the integral over the 
arc (in spite of its seeming divergence) tends toward zero; the integral can then be evalu- 
ated by means of residues, for which we need to solve the equation 

~m (s) + b~m (s) = O. ( 14 ) 

In this way we can also determine the relaxation time of the system as Zp = max [Re(s 2) - 
Im(s)2]-1; the Eq. (14), however, can only be solved numerically. 
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To illustrate the influence of the kinetic layer and the boundary conditions (2), we 
supply a formula for the effective, thermal conductivity in the stationary case. Averaging 
the thermal flow in the aerodispersed system, we have 

< qi > = -  (• < v,Te > q- ~ ~dQ Z .[ [(• (• ?,Td V. 
n V a 

The function ~ describes the possible states of the system. Assuming that 

< q, > = ~ < vjT > ; v~T = cj~ < wT >, 

we find, in the case of identical particles, that the effective thermal conductivity is given 
by 

"~kn = 8hn - -  (Xe)kt~ (Xa)mn, 

where N/V = 7N is the volume concentration of the particles. Assuming that the medium and 
the particles are isotropic, that ~N is small, and that we can neglect the thermal interac- 
tion, we find, in this approximation, 

X elf = X e 1 -- y~ KV-~)| J 

< v.~T > ---- (v, Te)| x ---- I --(Za/• 

With no loss of generality, we can assumethat (7Te)= = (7zTe)~. In the stationary case we 
obtain, carrying out the ihtegration over the volume of the particle, 

{ (L--1)(I+2K,cqK~ }; ~ =  ~e 
~eff = ~, 1-- 37N 1 -4- 2~ + 2Kn (KT -- Cq) x~ 

The influence of the coefficients K T and Cq can be characterized by the expression 

~eff _ Ne [ 
P =  ~]ff .•  ' 

where the index i means that in the calculations the coefficients K T and Cq were taken into 
account. 

According to the data in [3], K T = 2.2; Cq = 0.55. Then with Kn = 0.3, for an air-marble 
dust system we obtain P = 1.9. Putting Cq = 0, i.e., not taking thermal slippage into account, 
we have P = 2.25. 

NOTATION 

R, particle radius; • , thermal conductivity; cp, heat capacity; p, density; KT, cq, co- 
efficients for a thermal jump and slip; l, mean path of particles of a medium; Kn, Knudsen 
number; F(r, t), function of the sources; q(r), initial temperature distribution; TI, sta- 
tionary solution; T2, solution regular in the infinity; Ynm(0, ~), spherical harmonic func- 
tions; Jn, Xn, spherical Bessel and Neuman functions. Indices: a, particle parameters and 
value of the functions inside a particle; e, same in the medium; n, m, indices of the coef- 
ficients for spherical function expansions. 
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